A Projection-Iterative Method for Finding Periodic Solutions of Nonlinear Systems of Difference-Differential Equations with Impulses

S. G. Hristova and D. D. Bainov
Department of Mathematics,
Plovdiv University, Plovdiv, Bulgaria
Communicated by Oved Shisha

Received September 7, 1984; revised January 21, 1986

Abstract

A method is developed for finding approximately the periodic solutions of nonlinear systems of difference-differential equations with impulses at fixed moments. © 1987 Academic Press, Inc.

During recent years which have witnessed vigorous advances in the theory of automatic control, the theory of nonlinear oscillations, quantum mechanics, and so on, a number of contributions have been published concerning solutions of differential equations with impulses. Mil'man and Myshkis were the first to investigate these problems in [1,2]; notice also [3-11].

The present paper supplies a justification of a method for the study of periodic solutions of nonlinear systems of differential-difference equations with impulses at fixed moments. The method employs and unifies the ideas of the Galerkin method and the numerical-analytic method due to Samoilenko [3].

1. Statement of the Problem. Some Assumptions

Consider a system of difference-differential equations with impulses at fixed moments:

$$
\begin{gather*}
\dot{x}=f(t, x(t), x(t-h)), \quad t \neq t_{i} \tag{1}\\
\left.\Delta x\right|_{t=t_{i}}=I_{i}\left(x\left(t_{i}\right)\right),
\end{gather*}
$$

where $x, f, I_{i} \in R^{n}, t_{i} \in R\left(i \in Z_{0}\right)$ are fixed points, Z_{0} is a set of integers, $\left.\Delta x\right|_{i=t_{i}}=x\left(t_{i}+0\right)-x\left(t_{i}-0\right)$, and $t_{i+1}>t_{i}$ for $i \in Z_{0}$.

By P denote the point with coordinates $(t, x(t))$, where $x(t)$ is the solution of (1). The motion of the point P can be described as follows: the point P starts at the point $\left(\tau_{0}, x_{0}\right)$ and moves along the integral curve $(t, x(t))$ of the system $\dot{x}=f\left(t, x(t), x(t-h)\right.$) until the moment $t_{1}>\tau_{0}$ when the point P "instantly" moves from the position $\left(t_{1}, x\left(t_{1}\right)\right)$ into the position $\left(t_{1}, x\left(t_{1}\right)+I_{1}\left(x\left(t_{1}\right)\right)\right)$. Then the point P moves along the integral curve $(t, x(t))$ of the system without impulses until the moment $t_{2}>t_{1}$, and so on. Without loss of generality it can be assumed that $\tau_{0}=0$.

Therefore, the solution of the system with impulses (1) is a piecewise continuous function $x(t)$ with discontinuity points of the first kind at the points $t_{i}, i \in Z_{0}$, and for $t \in\left(t_{i}, 1, t_{i}\right)$ it satisfies the equation

$$
\dot{x}=f(t, x(t), x(t-h)),
$$

while for $t=t_{i}$, it satisfies the jump condition

$$
x\left(t_{i}+0\right)-x\left(t_{i}-0\right)=I_{i}\left(x\left(t_{i}-0\right)\right)
$$

Suppose the function $x(t)$ is left continuous at the jump points $t_{i}, i \in Z_{0}$, i.e.,

$$
x\left(t_{i}\right)=x\left(t_{i}-0\right)=\lim _{\varepsilon \downarrow 0} x\left(t_{i}-\varepsilon\right)
$$

Suppose the points t_{i} are such that

$$
\lim _{i \rightarrow \pm x} t_{i}= \pm \infty .
$$

We say that conditions (A) hold if the following conditions are satisfied:
A1. The function $f: G \rightarrow R^{n}$ is defined and continuous in

$$
G=\{(t, x, y): t \in R, x, y \in \bar{D}\}
$$

it is periodic with respect to t with period 2π and satisfies the inequality

$$
\begin{equation*}
|f(t, x, y)-f(t, \bar{x}, \bar{y})| \leqslant N\{|x-\bar{x}|+|y-\bar{y}|\}, x, \bar{x}, y, \bar{y} \in \bar{D}, \tag{2}
\end{equation*}
$$

where \bar{D} is the closure of a bounded domain in $R^{n},|\cdot|$ is some norm in R^{n}.
A2. Natural numbers κ and κ_{1} exist, such that $t_{i+\kappa}=t_{i}+h$ and $\kappa_{1} h=2 \pi$.

A3. The functions $I_{i}: \bar{D} \rightarrow R^{n}\left(i \in Z_{0}\right)$ are defined and continuous in \bar{D} and satsisfy the conditions

$$
\begin{equation*}
\left(\left|I_{i}(x)-I_{i}(\bar{x})\right| \leqslant L|x-\bar{x}|, \quad x, \bar{x} \in \bar{D}\right. \tag{3}
\end{equation*}
$$

uniformly in i,

$$
I_{i+\rho}(x)=I_{i}(x), \quad x \in \bar{D}
$$

where $\rho=\kappa \kappa_{1}$.
Introduce the notation

$$
M=\max _{\substack{t \in[0,2 \pi \\ x, y \in D}}|f(t, x, y)|+\max _{\substack{x \in D \\ 1 \leqslant i \leqslant \rho}}\left|I_{i}(x)\right| .
$$

Consider the space Ω_{1} consisting of all continuous 2π-periodic functions. Each function $v(t) \in \Omega_{1}$ is associated with the corresponding Fourier series

$$
v(t) \sim \frac{a_{0}}{2}+\sum_{q=1}^{\infty}\left(a_{q} \cos q t+b_{q} \sin q t\right)
$$

where

$$
a_{\varphi}=\frac{1}{\pi} \int_{0}^{2 \pi} v(t) \cos q t d t, \quad b_{q}=\frac{1}{\pi} \int_{0}^{2 \pi} v(t) \sin q t d t .
$$

Introduce the operators $P_{0}: \Omega_{1} \rightarrow R^{n}$ and $P_{m}: \Omega_{1} \rightarrow R^{n}$ defined by the equalities

$$
\begin{aligned}
& P_{0} v(t)=\frac{1}{2 \pi} \int_{0}^{2 \pi} v(t) d t \\
& P_{m} v(t)=\sum_{q=1}^{m}\left(a_{q} \cos q t+b_{q} \sin q t\right) .
\end{aligned}
$$

Introduce the notation

$$
\|x(t)\|=\sup _{t \in[0,2 \pi]}|x(t)|
$$

Further the following lemma will be employed.
Lemma 1 [12]. If $v(t)$ is a continuous 2π-periodic function, then the following estimates hold:

$$
\begin{gather*}
\left\|\int_{0}^{t} P_{m} v(t) d t\right\| \tag{4}
\end{gather*} \leqslant \pi\|v(t)\|,
$$

where E is the identity,

$$
\sigma(m)= \begin{cases}\frac{\pi^{2}}{6}, & m=0 \\ \frac{1}{(m+1)^{2}}+\frac{1}{(m+2)^{2}}+\cdots, & m=1,2, \ldots\end{cases}
$$

Note that inequalities (4) and (5) also hold for piecewise continuous functions admitting Fourier expansions.

The periodic solutions of system (1) are found in two steps. Assume first that a unique 2π-periodic solution of system (1) exists and construct a sequence of functions, periodic and tending uniformly to the solution of system (1). Then we prove an existence theorem for the unique periodic solution of system (1).

2. Constructing Successive Approximations. Auxiliary Theorems

Suppose system (1) has a unique 2π-periodic solution $\varphi(t)$ for which $\varphi(0)=x_{0}$.

Consider the set S consisting of all piecewise continuous functions $x:[-h, 2 \pi] \rightarrow \bar{D}$ with discontinuity points $t_{i}, i \in Z_{0}$ of the first kind, for which

$$
\begin{align*}
x(0) & =x(2 \pi)=x_{0} \tag{6}\\
x(t) & =x(t+2 \pi) \quad \text { for } \quad t \in[-h, 0] \tag{7}
\end{align*}
$$

Define the sequence of functions $x_{\kappa}(t)$ by the formula, as follows:

$$
x_{0}(t) \equiv x_{0} \quad \text { for } \quad t \in[-h, 2 \pi]
$$

$$
x_{\kappa+1}(t)=\left\{\begin{array}{l}
x_{0}+\int_{0}^{t} P_{m} f\left(t, x_{\kappa+1}(t), x_{\kappa+1}(t-h)\right) d t \tag{8}\\
\quad+\int_{0}^{t}\left(E-P_{0}-P_{m}\right) f\left(t, x_{\kappa}(t), x_{\kappa}(t-h)\right) d t \\
\quad+\sum_{0<t_{i}<t} I_{i}\left(x_{\kappa}\left(t_{i}\right)\right)-\frac{t}{2 \pi} \sum_{0<t_{i}<2 \pi} I_{i}\left(x_{\kappa}\left(t_{i}\right)\right) \quad \text { for } t \in[0,2 \pi] \\
x_{\kappa+1}(t+2 \pi) \quad \text { for } t \in[-h, 0),
\end{array}\right.
$$

where $m>0$ is a fixed integer.
By Ω denote the set of points from R^{n} lying in the domain D together with their $a(m)$-neighbourhood, where $a(m)=M(\pi+2 \sqrt{2} \sigma(m)+2 \rho)$.

We say that conditions (B) hold if the following conditions are satisfied:
B1. The set Ω is non-empty.
B2. The relation $x_{0} \in \Omega$ holds.
B3. The following inequalities hold:

$$
(4 / \sqrt{3}) \pi N<1, \quad \frac{4 \sqrt{2} \sigma(m) N+2 \rho L}{1-(4 / \sqrt{3}) \pi N}<1 .
$$

The algorithm for finding the functions $x_{\kappa+1}(t), \kappa=0,1,2, \ldots$ is now given.

In Eq. (8) set $\kappa=0$ and for $t \in[0,2 \pi]$ we obtain

$$
\begin{aligned}
x_{1}(t)= & x_{0}+\int_{0}^{t} P_{m} f\left(t, x_{1}(t), x_{1}(t-h)\right) d t \\
& +\int_{0}^{t}\left(E-P_{0}-P_{m}\right) f\left(t, x_{0}, x_{0}\right) d t \\
& +\sum_{0<t_{i}<t} I_{i}\left(x_{0}\right)-\frac{t}{2 \pi} \sum_{0<t_{i}<2 \pi} I_{i}\left(x_{0}\right) .
\end{aligned}
$$

Introduce the notation

$$
\begin{align*}
a_{q_{1}}= & \frac{1}{\pi} \int_{0}^{2 \pi} f\left(t, x_{1}(t), x_{1}(t-h)\right) \cos q t d t, \tag{9}\\
b_{q_{1}}= & \frac{1}{\pi} \int_{0}^{2 \pi} f\left(t, x_{1}(t), x_{1}(t-h)\right) \sin q t d t, \tag{10}\\
\psi_{0}(t)= & \int_{0}^{t}\left(E-P_{0}-P_{m}\right) f\left(t, x_{0}, x_{0}\right) d t \\
& +\sum_{0<t_{i}<t} I_{i}\left(x_{0}\right)-\frac{t}{2 \pi} \sum_{0<t_{i}<2 \pi} I_{i}\left(x_{0}\right) .
\end{align*}
$$

Then the solution $x_{1}(t)$ can be rewritten as

$$
x_{1}(t)=x_{0}+\sum_{q=1}^{m} \frac{1}{q}\left[a_{q_{1}} \sin q t+b_{q_{1}}(1-\cos q t)\right]+\psi_{0}(t) .
$$

Relation (11) implies that the solution $x_{1}(t)$ depends on $2 m n$ unknown numbers $a_{q_{1}}$ and $b_{q_{1}}(q=\overline{1, m})$. These parameters can be determined by the system (9), (10) from $2 m n$ algebraic or transcendent equations with $2 m n$
unknown parametrs (for fixed m). Analogously, (for fixed m) the ($\kappa+1$)th approximation $x_{n+1}(t)$ can be determined by the equality

$$
\begin{equation*}
x_{\kappa+1}(t)=x_{0}+\sum_{q=1}^{m} \frac{1}{q}\left[a_{q-k+1} \sin q t+b_{q, k+1}(1-\cos q t)\right]+\psi_{\kappa+1}(t), \tag{12}
\end{equation*}
$$

where

$$
\begin{align*}
\psi_{\kappa+1}(t)= & \int_{0}^{t}\left(E-P_{0}-P_{m}\right) f\left(t, x_{\kappa}(t), x_{\kappa}(t-h)\right) d t \\
& +\sum_{0<t_{i}<t} I_{i}\left(x_{\kappa}\left(t_{i}\right)\right)-\frac{t}{2 \pi} \sum_{0<t_{i}<2 \pi} I_{i}\left(x_{\kappa}\left(t_{i}\right)\right), \tag{13}
\end{align*}
$$

and the coefficients $a_{q, k+1}$ and $b_{q, k+1}$ are determined by the system

$$
\begin{align*}
& a_{q, \kappa+1}=\frac{1}{\pi} \int_{0}^{2 \pi} f\left(t, x_{\kappa+1}(t), x_{\kappa+1}(t-h)\right) \cos q t d t \\
& b_{q, \kappa+1}=\frac{1}{\pi} \int_{0}^{2 \pi} f\left(t, x_{\kappa+1}(t), x_{\kappa+1}(t-h)\right) \sin q t d t \tag{14}
\end{align*}
$$

Lemma 2. Suppose conditions (A) and (B) hold. Then equations (8) can be solved with respect to $x_{\kappa}(t)$ and $x_{\kappa}(t) \in S, \kappa=1,2, \ldots$

Proof. Define the operator $T: S \rightarrow R^{n}$ by the formula

$$
T(x, Z)(t)=\left\{\begin{array}{l}
x_{0}+\int_{0}^{t} P_{m} f(t, x(t), x(t-h)) d t \\
\\
\quad+\int_{0}^{t}\left(E-P_{0}-P_{m}\right) f(t, Z(t), Z(t-h)) d t \\
\\
\quad+\sum_{0<t_{1}<t} I_{i}\left(Z\left(t_{i}\right)\right)-\frac{t}{2 \pi} \sum_{0<t_{i}<2 \pi} I_{i}\left(Z\left(t_{i}\right)\right), \quad t \in[0,2 \pi] \\
T(x, Z)(t+2 \pi), \quad t \in[-h, 0)
\end{array}\right.
$$

Then for $x \in S$ and a fixed $Z \in S$, the equality

$$
T(x, Z)(0)=T(x, Z)(2 \pi)=x_{0}
$$

holds.
Inequalities (4) and (5) yield the estimate

$$
\left\|T(x, Z)(t)-x_{0}\right\| \leqslant a(m)
$$

Hence the operator T transforms the set S into itself (for fixed $Z \in S$).
Let $x(t), \bar{x}(t) \in S$. Estimate the norm of the difference $T(x, Z)(t)-$ $T(\bar{x}, Z)(t)$,

$$
\begin{equation*}
\|T(x, Z)(t)-T(\bar{x}, Z)(t)\| \leqslant(4 / \sqrt{3}) \pi N\|x(t)-\bar{x}(t)\| \tag{15}
\end{equation*}
$$

Condition B3 and inequality (15) imply that the operator $T: S \rightarrow S$ is contractive and by the Banach fixed point theorem the operator equation (8) has a unique solution $x_{\kappa+1}(t) \in S, \kappa \geqslant 0$.

Moreover, the following relations hold:

$$
\begin{gather*}
\left\|x_{\kappa+1}(t)-x_{0}\right\| \leqslant a(m) \tag{16}\\
x_{\kappa+1}(0)=x_{\kappa+1}(2 \pi)=x_{0}
\end{gather*}
$$

This proves Lemma 2.

3. Convergence of the Successive Approximations

Lemma 3. Suppose conditions (A) and (B) hold. Then the sequence of functions $\left\{x_{\kappa}(t)\right\}_{0}^{\infty}$ defined by Eqs. (8) is uniformly convergent as $t \in[-h, 2 \pi]$.

Proof. Inequalities (2), (3), (4), and (5) imply the estimate

$$
\begin{align*}
\| x_{2}(t)- & x_{1}(t) \| \\
\leqslant & \pi N\left\|_{1}(t)-x_{1}(t)\right\|+\pi N\left\|x_{2}(t-h)-x_{1}(t-h)\right\| \\
& +2 \sqrt{2} \sigma(m) N\left[\left\|x_{1}(t)-x_{0}\right\|+\left\|x_{1}(t-h)-x_{0}\right\|\right] \\
& +2 \rho L\left\|x_{1}(t)-x_{0}\right\| \\
\leqslant & (4 / \sqrt{3}) \pi N\left\|x_{2}(t)-x_{1}(t)\right\|+(4 \sqrt{2} \sigma(m) N+2 \rho L)\left\|x_{1}(t)-x_{0}\right\| . \tag{17}
\end{align*}
$$

Inequality (17) yields

$$
\left\|x_{2}(t)-x_{1}(t)\right\| \leqslant \frac{4 \sqrt{2} \sigma(m) N+2 \rho L}{1-(4 / \sqrt{3}) \pi N}\left\|x_{1}(t)-x_{0}\right\|
$$

Introduce the notation

$$
\begin{equation*}
q_{m}=\frac{4 \sqrt{2} \sigma(m) N+2 \rho L}{1-(4 / \sqrt{3}) \pi N} \tag{18}
\end{equation*}
$$

The method of mathematical induction implies

$$
\left\|x_{\kappa+1}(t)-x_{\kappa}(t)\right\| \leqslant q_{m}^{\kappa}\left\|x_{1}(t)-x_{0}\right\|
$$

Hence, the following inequality holds:

$$
\begin{equation*}
\left\|x_{\kappa+s}(t)-x_{\kappa}(t)\right\| \leqslant q_{m}^{\kappa} \sum_{i=0}^{s-1} q_{m}^{i}\left\|x_{1}(t)-x_{0}\right\| . \tag{19}
\end{equation*}
$$

Inequality (19), in view of condition B3 and the fact that S is closed, implies the uniform convergence of the sequence $\left\{x_{\kappa}(t)\right\}_{0}^{\infty}$. Introduce the notation $x_{\infty}(t)=\lim _{\kappa \rightarrow \infty} x_{\kappa}(t)$. Since the set S is closed, $x_{\infty}(t) \in S$. As $s \rightarrow \infty$, inequality (19) implies

$$
\left\|x_{\infty}(t)-x_{\kappa}(t)\right\| \leqslant \frac{q_{m}^{\kappa}}{1-q_{m}}\left\|x_{1}(t)-x_{0}\right\| .
$$

By the definition of the functions $x_{\kappa}(t)$, it follows that the function $x_{\infty}(t)$ for $t \in[0,2 \pi]$ satisfies the equation

$$
\begin{align*}
x(t)= & x_{0}+\int_{0}^{t} f(t, x(t), x(t-h)) d t \\
& -\int_{0}^{t} P_{0} f(t, x(t), x(t-h)) d t \\
& +\sum_{0<t_{i}<t} I_{i}\left(x\left(t_{i}\right)\right)-\frac{t}{2 \pi} \sum_{0<t_{i}<2 \pi} I_{i}\left(x\left(t_{i}\right)\right) . \tag{20}
\end{align*}
$$

The relation $x_{\infty}(t) \in S$ implies that the function $x_{\infty}(t)$ has a 2π-periodic extension denoted by $X_{\infty}(t)$.

Theorem 1. Suppose the following conditions hold:

1. Conditions (A) and (B) are satisfied.
2. Equation (1) has a 2π-periodic solution $\varphi(t)$ for which $\varphi(0)=x_{0}$.

Then the relation

$$
\varphi(t)=X_{\infty}(t)
$$

holds uniformly in x_{0}, and

$$
\left\|\varphi(t)-x_{\kappa}(t)\right\| \leqslant \frac{q_{m}^{\kappa}}{1-q_{m}}\left\|x_{1}(t)-x_{0}\right\|
$$

where q_{m} are defined by Eqs. (18).

Proof. Condition 2 of the theorem implies that

$$
\int_{0}^{2 \pi} f(t, \varphi(t), \varphi(t-h)) d t+\sum_{0<t_{i}<2 \pi} I_{i}\left(\varphi\left(t_{i}\right)\right)=0 .
$$

Hence for $t \in[0,2 \pi]$ the function $\varphi(t)$ satisfies Eq. (20) and the uniqueness of the solution of Eq. (20) implies that

$$
\varphi(t) \equiv x_{\infty}(t) \quad \text { for } \quad t \in[0,2 \pi]
$$

and hence

$$
\varphi(t)=X_{\infty}(t) \quad \text { for } \quad t \in(-\infty, \infty) .
$$

4. Existence of a Periodic Solution

The existence of a 2π-periodic solution of the system (1) is considered here. Introduce the notation

$$
\begin{gathered}
\Delta\left(x_{0}\right)=P_{0} f\left(t, x_{\infty}(t), x_{\infty}(t-h)\right)+\frac{1}{2 \pi} \sum_{0<t_{i}<2 \pi} I_{i}\left(x_{\infty}\left(t_{i}\right)\right), \\
\Delta_{m}\left(x_{0}\right)=P_{0} f\left(t, x_{m}(t), x_{m}(t-h)\right)+\frac{1}{2 \pi} \sum_{0<t_{i}<2 \pi} I_{i}\left(x_{m}\left(t_{i}\right)\right) .
\end{gathered}
$$

Since the function $x_{\infty}(t)$ is a solution of Eq. (20) then for $\Delta\left(x_{0}\right)=0$ the function $x_{\infty}(t)$ will also satisfy system (1).

Thus, the problem for the existence of a periodic solution of Eq. (1) is related to the problem for the existence of zeros of the function $\Delta\left(x_{0}\right)$. The points x_{0} for which $\Delta\left(x_{0}\right)=0$ are singular points of the mapping $\Delta: \bar{D} \rightarrow R^{n}$. However, since the functions $x_{k}(t), \kappa \geqslant 1$ are the only ones known, then, as to employ efficiently the method proposed, we have to transform the problem for finding the zeros of the function $\Delta\left(x_{0}\right)$ into a problem for finding the zeros of the function $\Delta_{\kappa}\left(x_{0}\right), \kappa \geqslant 1$.

Theorem 2. Suppose the following conditions hold:

1. Conditions (A) and (B) are satisfied.
2. A convex closed domain $D_{1} \subset \bar{D}$ exists such that for some value of $\kappa \geqslant 1$ the mapping $\Delta_{\kappa}: \bar{D} \rightarrow R^{n}$ has a unique singular point of nonzero index in D_{1}.
3. On the boundary $\Gamma_{D_{1}}$ of the domain D_{1} the following inequality holds

$$
\inf _{x \in \Gamma_{D_{1}}}\left|\Delta_{\kappa}(x)\right|>\frac{q_{m}^{\kappa}}{1-q_{m}}(N+L)\left\|x_{1}-x_{0}\right\| .
$$

Then system (1) has a 2π-periodic solution $x^{*}(t)$ for which $x^{*}(0)=x_{0} \in \bar{D}$.
Proof. The proof is analogous to that of Theorem 1 from [3], taking into account the inequality

$$
\left|\Delta\left(x_{0}\right)-\Delta_{\kappa}\left(x_{0}\right)\right| \leqslant(N+L) \frac{q_{m}^{\kappa}}{1-q_{m}}\left\|x_{1}-x_{0}\right\|
$$

References

1. V. D. Mil'man and A. D. Mysheis, On the stability of motion in the presence of impulses, Sibirsk. Math. J. 1 (1960), 233-237.
2. V. D. Mil'man and A. D. Mysheis, Random impulses in linear dynamic systems, in "Approximate Methods for Solving Differential Equations," pp. 64-81, Akad. Nauk. Ukrain. SSR, Kiev, 1963.
3. A. M. Samiolenko, Numerical-analytic method for investigation of periodic systems of ordinary differential equations, II, Ukrain. Mat. Zh. 18, No. 2 (1966), 50-59.
4. S. G. Pandit, On the stability of impulsively perturbed differential systems, Bull. Austral. Math. Soc. 17 (1977), 423-432.
5. S. G. Pandit, Systems described by differential equations containing impulses: Existence and uniqueness, Rev. Roumaine Math. Pures Appl. 26 (1981), 879-887.
6. S. G. Pandit, Differential systems with impulsive perturbations, Pacific J. Math. 86 (1980), 553-560.
7. T. Pavlidis, Stability of systems described by differential equations containing impulses, IEEE Trans. Automat. Control AC-12 (1967), 43-45.
8. V. Raghavendra and M. Rama Mohana Rao, On stability of differential systems with respect to impulsive perturbations, J. Math. Anal. Appl. 48 (1974), 515-526.
9. M. Rama Mohana Rao and V. Sree Hari Rao, Stability of impulsively perturbed systems, Bull. Austral. Math. Soc. 16 (1977), 99-110.
10. V. Sree Hari Rao, On boundedness of impulsively perturbed systems, Bull. Austral. Math. Soc. 18 (1978), 237-242.
11. G. Jürgen, A nonlinear Volterra-Stieltjes integral equation and a Gronwall inequality in one dimension, Illinois J. Math. 24 (1980), 244-263.
12. V. I. Grechio, On a projection-iterative method for determining of periodic systems of ordinary differential equations, Ukrain. Math. J. 26 (1974), 534-539.
