
JOURNAL OF APPROXIMATION THEORY 49, 311-320 (1987)

A Projection-Iterative Method
for Finding Periodic Solutions

of Nonlinear Systems of
Difference- Differential Equations with Impulses

S. G. HRISTOVA AND D. D. BAINOV

Department of Mathematics,
Plovdiv University, Plovdiv, Bulgaria

Communicated by Oved Shisha

Received September 7, 1984; revised January 21, 1986

A method is developed for finding approximately the periodic solutions of non
linear systems of difference-differential equations with impulses at fixed moments.
:e 1987 Academic Press. Inc.

During recent years which have witnessed vigorous advances in the
theory of automatic control, the theory of nonlinear oscillations, quantum
mechanics, and so on, a number of contributions have been published con
cerning solutions of differential equations with impulses. Mil'man and
Myshkis were the first to investigate these problems in [1,2]; notice also
[3-11 ].

The present paper supplies a justification of a method for the study of
periodic solutions of nonlinear systems of differential-difference equations
with impulses at fixed moments. The method employs and unifies the ideas
of the Galerkin method and the numerical-analytic method due to
Samoilenko [3].

1. STATEMENT OF THE PROBLEM. SOME ASSUMPTIONS

Consider a system of difference-differential equations with impulses at
fixed moments:

x=!(t,x(t),x(t-h)), t#-t j

LJx It~ t, = Ij(x( t;)),
(1 )

where x, f, I j ERn, t j E R (i E Zo) are fixed points, Zo is a set of integers,
LJxlt~t,=x(tj+O)-x(tj-O), and tj+I>tjfor iEZo'
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By P denote the point with coordinates (I, x(l)), where xlt) is the
solution of (1 ). The motion of the point P can be described as follows: the
point P starts at the point (T(H xo) and moves along the integral curve
(t, x(t)) of the system .~ = f( t, x(t), x( t - h)) until the moment t 1 > To when
the point P "instantly" moves from the position (t I' x( t I)) into the position
(tl,X(tJ)+II(X(t l ))). Then the point P moves along the integral curve
(t, x( t)) of the system without impulses until the moment t2> t I' and so on.
Without loss of generality it can be assumed that To = O.

Therefore, the solution of the system with impulses (I) is a piecewise
continuous function x( t) with discontinuity points of the first kind at the
points t" iEZo, and for tE(t, I' tl) it satisfies the equation

.\: =f(t, x(t), x(t - h)),

while for t = t" it satisfies the jump condition

x( t i + 0) - x( t i - 0) = IJx( t, - 0)).

Suppose the function x(t) is left continuous at the jump points t i' i E Z(b

i.e.,

x( t i) = x( t i - 0) = lim x( t i - f, ).

dO

Suppose the points t i are such that

lim t i = ±:Xl.
i- ±J_

We say that conditions (A) hold if the following conditions are satisfied:

A1. The function f: G -> W is defined and continuous in

G= (ft, x, y): tER, x, yED}

it is periodic with respect to t with period 2n and satisfies the inequality

If(t, x, y)-f(t, .x, Y)I ~N{lx-xl + Iy- YI}, x, x, y, YED, (2)

where D is the closure of a bounded domain in R N
, I' 1is some norm in R n

.

A2. Natural numbers K and K 1 exist, such that t i + K = t i + hand
K J h=2n.

A3. The functions Ii: 15 -> R n (i E Zo) are defined and continuous in
15 and satsisfy the conditions

x,xED (3)
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uniformly in i,

where p = KK,.

Introduce the notation

M = max If(t, x, y)1 + max II;(x)l.
t E [0,2~!J < E 15

't",YED 1 ~i~p
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Consider the space Q 1 consisting of all continuous 2n-periodic functions.
Each function v( t) E Q, is associated with the corresponding Fourier series

ace'

v(t) ~ 2
0 + L: (a q cos qt + b q sin qt),

q~ 1

where

1 f211
aq =- v(t)cosqtdt,

n 0

If211bq =- v(t) sin qtdt.
n 0

Introduce the operators Po: Q 1 ---> R n and Pm: Q, ---> R n defined by the
equalities

1 f211
Pov(t) = 2n 0 v(t) dt,

m

Pmv(t) = L: (a q cos qt + b'1 sin qt).
q~l

Introduce the notation

Ilx(t)11 = sup Ix(tll·
t E [0,211]

Further the following lemma will be employed.

LEMMA 1 [12]. If v(t) is a continuous 2n-periodic function, then the
following estimates hold:

III PmV(t)dtll ~n Ilv(t)ll,

III (E-Po-Pm)v(t)dtll ~2J2(J(m) Ilv(t)ll,

(4)

(5)
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where E is the identity,

O"(m) =

HRISTOVA AND BAINOV

6 '

I 1-------;:-+ + ...
(m+l)2 (m+2)2 '

m=O

m= 1, 2, ....

Note that inequalities (4) and (5) also hold for piecewise continuous
functions admitting Fourier expansions.

The periodic solutions of system (1) are found in two steps. Assume first
that a unique 2n-periodic solution of system (1) exists and construct a
sequence of functions, periodic and tending uniformly to the solution of
system (1). Then we prove an existence theorem for the unique periodic
solution of system (1).

2. CONSTRUCTING SUCCESSIVE ApPROXIMATIONS. AUXILIARY THEOREMS

Suppose system (l) has a unique 2n-periodic solution cp(t) for which
cp(O) = Xo.

Consider the set S consisting of all piecewise continuous functions
x: [ - h, 2n] -d5 with discontinuity points t i, i E Zo of the first kind, for
which

x(O) = x(2n) = xo,

x(t)=x(t+2n) for tE[-h,O].

Define the sequence of functions xK(t) by the formula, as follows:

(6)

(7)

for tE [-h, 2n],

x o+ f~ Pmf(t,XK+l(t),XK+l(t-h))dt

+ f~ (E-Po-Pm)f(t,xAt),xAt-h))dt (8)

for tE [0, 2n]

for tE[-h,O),

where m > 0 is a fixed integer.
By Q denote the set of points from R n lying in the domain D together

with their a(m )-neighbourhood, where a(m) = M(n + 2 fi O"(m) + 2p).
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(4/)3) nN < 1,

We say that conditions (B) hold if the following conditions are satisfied:

Bl. The set Q is non-empty.

B2. The relation X oE Q holds.

B3. The following inequalities hold:

4 J2 (J(m)N +2pL
r; <1.

1- (4/....; 3) nN

The algorithm for finding the functions x K+ ,(t), K = 0, 1, 2,... is now
given.

In Eq. (8) set K = °and for t E [0, 2n] we obtain

x 1(t) = X o+ f~ P mf(t, x 1(t), x,(t -h» dt

+ J: (E-Po-Pm)f(t,xo,xo)dt

Introduce the notation

1 f27<
aq[=- f(t,x,(t),x 1(t-h»cosqtdt,

n °
1 f27<

bq[= - f( t, Xl (t), X I (t - h» sin qt dt,
n °

Then the solution x 1(t) can be rewritten as

(9)

(10)

m 1
x 1(t)=xo+ L -[aq[sinqt+bqJI-cosqt)]+t/Jo(t). (11)

q= 1 q

Relation (11) implies that the solution Xl (t) depends on 2mn unknown
numbers aq [ and bq [ (q= 1, m). These parameters can be determined by the
system (9), (10) from 2mn algebraic or transcendent equations with 2mn
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unknown parametrs (for fixed m). Analogously, (for fixed m) the (K + 1)th
approximation x h + I (t) can be determined by the equality

m I
xnl(t)=XO + L -[G4nlsinqt+b4.nl(l~cosqt)]+t/J"+I(t), (12)

4~lq

where

and the coefficients G q .n I and bq." + I are determined by the system

1 f2l[
Gq.K+I=- f(t,XK+l(t),xn1(t-h))cosqtdt,

n 0
(14 )

LEMMA 2. Suppose conditions (A) and (B) hold. Then equations (8) can
be solved with respect to x,,(t) and x,,(t) E S, K = I, 2, ....

Proof Define the operator T: S ---> Rn by the formula

x o + f Pmf(t,x(t),x(t-h))dt
o

T(x, Z)(t) = ,
+L(E - Po - Pm) f(t, Z(t), Z(t - h)) dt

t
+ L IJZ(ti))-- L Ii(Z(tJ),

O<t/<t 2n O<lj<2rr

T(x,Z)(t+2n), tE[-h,O).

t E [0, 2n]

Then for XES and a fixed Z ES, the equality

T(x, Z)(O) = T(x, Z)(2n) = Xo

holds.
Inequalities (4) and (5) yield the estimate

IIT(x, Z)(t)-xoll ~a(m).
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Hence the operator T transforms the set S into itself (for fixed Z E S).
Let x(t), x(t) E S. Estimate the norm of the difference T(x, Z)(t)

T(x, Z)(t),

II T(x, Z)(t) - T(x, Z)(t)11 :( (4/}3) nN Ilx(t) - .~(t)ll· (15)

Condition B3 and inequality (15) imply that the operator T: S -+ S is
contractive and by the Banach fixed point theorem the operator equation
(8) has a unique solution XK+,(t)ES, K~O.

Moreover, the following relations hold:

IlxK+,(t)-xoll :(a(m)

xK+ 1(0) = xK+ d2n) = Xo'

This proves Lemma 2.

3. CONVERGENCE OF THE SUCCESSIVE ApPROXIMATIONS

(16 )

LEMMA 3. Suppose conditions (A) and (B) hold. Then the sequence of
functions {xAt)}~ defined by Eqs. (8) is uniformly convergent as
t E [ -h, 2n].

Proof Inequalities (2), (3), (4), and (5) imply the estimate

Ilx2(t) - xj(t)11

:(nN lix2(t)-x,(t)11 +nN Ilx 2(t-h)-x](t-h)11

+ 2}2 (J(m) N[ Ilx](t) - xoll + Ilx](t - h) - xoll]

+2pL Ilxj(t)-xoll

:( (4/}3) nN Ilx2(t) -x](t)11 + (4}2 (J(m) N + 2pL) Ilx 1(t) - xoll. (17)

Inequality (17) yields

Introduce the notation

640/49/4-2

4}2 (J(m)N + 2pL
q = ----"----'----~--'---

m 1 - (4/}3) nN
( 18)
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The method of mathematical induction implies

Hence, the following inequality holds:

s I

IIXK+,(t) - xK{t)11 ~ q':r, L: q'm Ilx1(t) - xoll·
i=O

(19)

Inequality (19), in view of condition B3 and the fact that S is closed,
implies the uniform convergence of the sequence {xK(t) }~. Introduce the
notation xw{t)=limK~wxAt). Since the set S is closed, Xx;{t)ES. As
s ---> 00, inequality (19) implies

By the definition of the functions xAt), it follows that the function xX)(t)
for t E [0, 2n] satisfies the equation

x{t) = Xo +rf(t, x(t), x{t - h)) dt
o

-I p of( t, x{t), x( t - h)) dt

(20)

The relation xw{t) E S implies that the function xw{t) has a 2n-periodic
extension denoted by X w{t).

THEOREM 1. Suppose the following conditions hold:

1. Conditions (A) and (B) are satisfied.

2. Equation (l) has a 2n-periodic solution qJ(t) for which qJ(O) = x o.

Then the relation

holds uniformly in xo, and

where qm are defined by Eqs. (18).
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Proof Condition 2 of the theorem implies that

f
2rr

f(t, cp(t), cp(t-h))dt+ I Ii(cp(tJ) =0.
o O<tr<2n
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Hence for t E [0, 2n] the function cp(t) satisfies Eq. (20) and the uniqueness
of the solution of Eq. (20) implies that

and hence

cp(t) == xCD(t) for tE [0, 2n]

for tE (- 00, ex)).

4. EXISTENCE OF A PERIODIC SOLUTION

The existence of a 2n-periodic solution of the system (1) is considered
here. Introduce the notation

Since the function xCD(t) is a solution of Eq. (20) then for ,1(xo) = 0 the
function x CD (t) will also satisfy system (1).

Thus, the problem for the existence of a periodic solution of Eq. (1) is
related to the problem for the existence of zeros of the function ,1(xo). The
points Xo for which ,1(xo) = 0 are singular points of the mapping
,1: 15 -+ R n

• However, since the functions xAt), K ~ 1 are the only ones
known, then, as to employ efficiently the method proposed, we have to
transform the problem for finding the zeros of the function L1(xo) into a
problem for finding the zeros of the function L1 Axo), K ~ 1.

THEOREM 2. Suppose the following conditions hold:

1. Conditions (A) and (B) are satisfied.

2. A convex closed domain D 1 C 15 exists such that for some value of
K ~ 1 the mapping ,1 K : 15 -+ R n has a unique singular point of nonzero index
in D 1 •
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3. On the boundary rD[ of the domain D 1 the following inequality
holds

Then system (1) has a 2TC-periodic solution X*(t) for which x*(O)=xoED.

Proof The proof is analogous to that of Theorem 1 from [3], taking
into account the inequality
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